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Marangoni convection. Part 1. A cavity
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Marangoni convection in a cavity with differentially heated sidewalls has been investi-
gated. The analysis includes the complete effects of interface deformation. The results
determined for large Biot and zero Marangoni (zero Prandtl) numbers show that
steady convection may exist for Reynolds numbers Re larger than, and for capillary
numbers Ca and cavity lengths L smaller than, certain critical values. The main factor
limiting the existence of steady convection involves the interface becoming tangential
to the hot wall at the contact point (tangency condition). Unsteady analysis shows
that the tangency condition defines the limit point for the system; its violation is most
likely to lead to the formation of a dry spot at the hot wall. The critical values of Re,
Ca, and L are mutually dependent and change with the heating rate (they reach a
minimum for instantaneous heating). For a certain range of parameters, multiple (i.e.
steady and oscillatory) states are possible. The oscillatory state has a form consisting
of the steady mode with a simple harmonic sloshing motion superposed on it. A
reduction in the heating rate permits heating of the liquid without triggering the
oscillatory state. Transition between the steady and the oscillatory states involves a
nonlinear instability process.

1. Introduction
The thermocapillary effect is recognized as an important factor is many areas of

technology, where it could be either a dominant source of motion (e.g. zero-gravity
containerless materials processing) or a contributing factor (e.g. conventional crystal
growth or welding). Control and optimization of these processes critically depend on
the complete understanding of all phenomena that may be induced by this effect.
The focus of the present work is on studying these phenomena in the absence of any
body forces, and especially in the absence of gravity.

The character of the response of a liquid adjacent to a non-isothermal interface
depends on the orientation of the temperature gradient vector with respect to the
interface. In the (geometrically) simplest case of a liquid layer with an initially flat
interface resting on a plane uniformly heated solid plate, the temperature gradient is
normal to the interface and it induces motion only when some critical conditions are
met. This process, which is referred to as Marangoni instability, has been reviewed by
Davis (1987). When the layer is non-uniformly heated, the temperature gradient vector
has a component in the direction parallel to the interface and the thermocapillary
effect always generates some motion, regardless of the magnitude of the temperature
gradient. This configuration has been studied recently by Floryan & Chen (1994)
who showed that an infinite continuous liquid layer may exist only when the external
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temperature field (i.e. the external heating) satisfies restrictive existence conditions.
The explicit form of these conditions was given in the case of negligible convective
transport. Analysis of finite-length layers showed that if the external temperature field
does not satisfy the existence conditions determined in the case of an infinite layer,
large interfacial deformations occur, leading (possibly) to rupture of the layer if the
cavity is made sufficiently long. One should note that the temperature fields satisfying
the existence conditions are rather unusual and are unlikely to be encountered in
practice. Also, the form of the existence conditions shows that it may not be possible
to enforce them in the case of a general flow (i.e. one with convection effects present),
and that the acceptable form of the external heating is a function of Reynolds number.
The above discussion suggests that, in general, one should expect the response of the
layer subject to steady non-uniform heating to consist of convection coupled with
large interfacial distortions leading, possibly, to rupture of the layer.

The present study is focused on analysis of the dynamics of liquid layers subject
to non-uniform steady heating. Our first goal is the determination of the pattern of
interface deformation and the associated convection under conditions leading to large
deformations, and the determination of the limits of existence of such layers with
convective effects present. The answer to this leads us directly to our second objective,
which is the determination of the behaviour of liquid layers under conditions when
steady solutions do not exist. Since the governing equations are not amenable to
analytical solutions under such conditions, we shall rely on numerical simulations.
Development of a special algorithm that permits time-dependent simulation of ther-
mocapillary convection with the interface undergoing large deformations therefore
forms an integral part of this project. We shall demonstrate in this and the companion
paper (Hamed & Floryan 2000) that different limiting factors affect the existence of
the layers, depending on the type of external heating being applied. These factors
include the interface approaching the bottom of the cavity (rupture of the layer; dry
out at the bottom) and the interface becoming tangential to the sidewalls (dry out at
the sidewalls). We shall also show that, depending on the type of external heating,
the interface may begin to oscillate if this heating is applied too rapidly.

Our attention will be focused on two types of heating. The first one, described in
this paper, corresponds to a cavity with differentially heated sidewalls which induce
linear temperature variations along the interface. The companion paper (Hamed &
Floryan 2000) describes the response of the layer subject to point heating as produced,
for example, by laser heating. Neither types of heating satisfy the existence conditions
for infinitely long layers.

The case of a cavity with differentially heated sidewalls has been widely studied and
represents a convenient reference case. A complete understanding of this fairly simple
flow configuration should provide a basis for analysis of complex configurations found
in applications. Sen & Davis (1982) described the flow structure in an asymptotically
long cavity in the Stokes limit and with an asymptotically small capillary numer
Ca = O(L−4), where L is the cavity length. Sen (1986) extended this analysis to
Ca = O(L−3) and showed the occurrence of large interfacial deformations. Floryan
& Chen (1994) demonstrated that a continuous liquid layer subject to this type of
heating cannot exist. The primary response of the layer consists of a large interfacial
deformation leading, most likely, to rupture if the layer is sufficiently long. Laure,
Roux & Ben Hadid (1990) and Ben Hadid & Roux (1992) described the differences
in the flow patterns at the cold and hot ends of long cavities with non-deformable
interface at higher values of Reynolds numbers. Zebib, Homsy & Meiburg (1985) and
Carpenter & Homsy (1990) investigated the formation of boundary layers in a square
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Figure 1. Sketch of the model problem. (a) Physical domain, (b) computational domain.

cavity with a fixed interface at high values of the Reynolds number. Peltier & Biringen
(1993) used direct numerical simulation in studying the transition between steady and
time-dependent convection in a cavity with a fixed interface. They concluded that
an instability may occur in a cavity with a minimum aspect ratio of 2.3 and a
minimum critical Marangoni number near 20 000; this instability depends upon
coupling between large-scale thermal structures in the flow field and the temperature-
sensitive interface. Chen & Hwu (1993) included effects of interface deformability and
concluded, on the basis of simulations of convection in a rectangular cavity whose
height was equal to half the length, that an instability may occur if the Marangoni
number reaches critical value; this value was found to be around 2. Mundrane, Xu &
Zebib (1995) and Mundrane & Zebib (1995) used an algorithm simplified through the
use of a small interfacial deformation assumption and found only steady flows; their
results contradict Chen & Hwu (1993). Liakopoulos & Brown (1993) investigated
flow in a square cavity using complete model equations and found only steady flows,
in agreement with Mundrane et al. (1995) and Mundrane & Zebib (1995). We shall
discuss the above results and the reported disagreements in § 3.4.

The paper is organized as follows. § 2 gives the formulation and explains the
notation used. § 3 gives a short description of the algorithm. § 4 provides a discussion
of our results. § 5 gives a short summary of the main conclusions.

2. Problem formulation
Consider a liquid in a cavity of length L and height H , as shown in figure 1.

The cavity, which is open from above, is formed by isothermal solid walls on the
left and right sides, and by an insulated solid plate on the bottom. The liquid is
incompressible, Newtonian, has density ρ, thermal conductivity k, specific heat per
unit mass c, thermal diffusivity κ = k/ρc, kinematic viscosity ν and dynamic viscosity
µ. The free surface, described by y = h(x, t), is bounded by a passive gas of negligible
density and viscosity. This free surface is associated with a surface tension σ, which
is a function of the local temperature. It is assumed, without loss of generality, that
the pressure in the gas phase is negligible.

In the absence of gravity, the unsteady motion of the liquid is governed by the
continuity, Navier–Stokes and energy equations subject to the following boundary
conditions:

x = −L/2: U = 0, T = TL, (2.1a)

x = L/2: U = 0, T = TR, (2.1b)

y = 0: U = Ty = 0, (2.1c)



82 M. Hamed and J. M. Floryan

F(x, y, t) = y − h(x, t) = 0: Ft +U · ∇F = 0, (2.1d )

S · n = 2σΛn+ σst, (2.1e)

k∇T · n+ hg(T − Tg) = 0. (2.1f )

In the above, U = ui + vj is the velocity vector, i and j are the unit vectors in the x-
and y-directions, respectively, T is the temperature of the liquid, S is the stress tensor
of the liquid, Λ stands for the mean curvature of the interface, ∇ denotes the nabla
operator, n stands for the unit vector normal to the interface pointing outwards, t
denotes the unit vector tangential to the interface, the subscripts x, y, t denote partial
derivatives ∂/∂x, ∂/∂y, ∂/∂t respectively, and the subscripts n, s denote normal and
tangential derivatives at the interface, respectively.

Equation (2.1d) is the kinematic condition at the liquid–gas interface. The stress
balances at the interface are given by (2.1e). The jump in the normal stress across the
interface is balanced by the surface tension times the mean curvature, and the jump
in the shear stress at the interface is balanced by the surface tension gradient. The
unit vectors are defined as follows:

n = (−hxi + j)/N, t = (i + hxj)/N, (2.2)

where

N = (1 + h2
x)

1/2. (2.3)

The mean curvature Λ of the interface in (2.1e) has the definition

Λ = − 1
2
∇ · n = 1

2
hxxN

−3. (2.4)

The thermal boundary condition at the interface is given by (2.1f) in which k is
the thermal conductivity of the liquid, hg is the heat transfer coefficient in the gas
and Tg(x, t) is the temperature in the gas phase. The thermal boundary condition
presumes that Tg(x, t) is known and that the heat transport at the liquid–gas interface
can be described by using a heat-transfer coefficient hg . The reader should note that
Tg(x, t), TL and TR may have to satisfy consistency conditions at the contact points.

Apart from boundary conditions (2.1), the liquid must also satisfy the mass conser-
vation constraint. Since the liquid is assumed to be incompressible, its total volume
must remain constant, i.e. ∫ L/2

−L/2
h(x, t) dx = V . (2.5)

The problem is closed by specifying the type of contact made by the interface at
the sidewalls. Here, we shall consider the fixed contact points case, i.e.

x = ± 1
2
L: h (x, t) = H. (2.6)

We shall use a linear equation of state for surface tension. In particular, we take

σ(T ) = σ∗ − γ(T − T∗), (2.7)

where σ∗ is the surface tension of the liquid at the reference temperature T∗ and the
constant γ is the negative of the derivative of the surface tension with respect to
temperature.

We scale the problem by using L and H as the length scales for the x- and y-
directions, respectively, u∗ and u∗A as the velocity scales for u and v, respectively (where
A is the cavity aspect ratio defined as H/L), µu∗/(AH) as the pressure scale, H/u∗ as
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the time scale and σ∗ as the surface tension scale. The dimensionless temperature T ′
is defined as

T − T∗ = (Tmax − Tmin)T ′, Tg − T∗ = (Tmax − Tmin)T ′g. (2.8)

Here Tmax and Tmin denote the maximum and the minimum of the interface tem-
perature, respectively. The characteristic velocity u∗ is derived from the so-called
Marangoni effect, i.e. the jump in the shear along the interface balances the surface
tension gradient. This leads to

u∗ = γ(Tmax − Tmin)/µ. (2.9)

With the above definitions the dimensionless equations (with the primes dropped)
can be written in the form

ux + vy = 0, (2.10a)

Re[ut + A(uux + vuy)] = −px + A2uxx + uyy , (2.10b)

ReA2[vt + A(uvx + vvy)] = −py + A2(A2vxx + vyy ), (2.10c)

Ma[Tt + A(uTx + vTy)] = A2Txx + Tyy , (2.10d)

where p denotes pressure.
Reynolds number Re and Marangoni number Ma have the standard definitions,

i.e.

Re =
u∗H
ν

=
γ(Tmax − Tmin)H

µν
, Ma =

u∗H
κ

=
γ(Tmax − Tmin)H

µκ
. (2.11)

The boundary conditions (2.1) transform to

x = − 1
2
: u = v = 0, T = TL, (2.12a)

x = 1
2
: u = v = 0, T = TR, (2.12b)

y = 0: u = v = Ty = 0, (2.12c)

y = h(x, t) : ht + A(uhx − v) = 0, (2.12d)

−p+
2A2[vy − hxuy + A2hx(−vx + hxux)]

(1 + A2h2
x)

=
A3Ca−1(1− A−1CaT )hxx

(1 + A2h2
x)

3/2
, (2.12e)

2A2hx(−ux + vy) + (1− A2h2
x)(A

2vx + uy) = −(Tx + hxTy)(1 + A2h2
x)

1/2, (2.12f )

(−A2hxTx + Ty)(1 + A2h2
x)
−1/2 + Bi[T − Tg(x, t)] = 0, (2.12g)

where (2.12d) is the kinematic condition, (2.12e) and (2.12f) are the stress balances
in the normal and tangential directions, respectively, and (2.12g) describes the heat
transfer condition. In (2.12e) Ca is the capillary number, given by

Ca =
µu∗
σ∗

=
γ(Tmax − Tmin)

σ∗
. (2.13)

The Biot number Bi in (2.12g) is defined by

Bi =
hgH

k
(2.14)

and measures the heat transport between the gas and the liquid phases. The dimen-
sionless form of the mass constraint retains the same form as (2.5). The contact
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conditions assume the form

x = ± 1
2
: h(x, t) = 1. (2.15)

Steady flow of the liquid is described by the same field equations with time deriva-
tives omitted, and by the same boundary conditions with the kinematic condition
(2.12d) simplified through elimination of ht.

3. Numerical method
This study is concerned with the steady and unsteady motions of the liquid. The

steady form of the equations is solved using the algorithm developed by Chen &
Floryan (1994). The following description is focused on the unsteady algorithm and
is limited to a short outline only. Details of the algorithm, including accuracy and
stability testing, are given by Hamed & Floryan (1998).

Flow problem (2.10), (2.12), and (2.15) with constraint (2.5) has to be solved nu-
merically on an irregular, time-dependent solution domain whose shape is determined
by the location of the free surface h(x, t). Application of the transformation

ξ = x, η =
y

h(x, t)
(3.1)

maps this domain onto a fixed rectangular domain in the computational (ξ, η) plane
(see figure 1) permitting use of the standard finite-difference discretization techniques
for spatial derivatives. The explicit form of the mapping function h(x, t) is not known
and has to be determined as a part of the numerical procedure.

The field variables are expressed in terms of the streamfunction–vorticity formu-
lation in order to guarantee enforcement of the incompressibility condition. Field
equations (2.10) take the following form:

∇2ψ + ω = 0, (3.2a)

ωt − ηh−1htωη +
A

h
(ψηωξ − ψξωη) = ∇2ω/Re, (3.2b)

Tt − ηh−1htTη +
A

h
(ψηTξ − ψξTη) = ∇2T/Ma, (3.2c)

where

u = ψy, v = ψx, ω = vx − uy, (3.2d)

∇2 = A2 ∂
2

∂ξ2
− 2A2ηhξh

−1 ∂2

∂ξ∂η
+ h−2(A2η2h2

ξ + 1)
∂2

∂η2
+ (2h2

ξ − hhξξ)ηA2h−2 ∂

∂η
.

The boundary conditions take the form

ξ = − 1
2

: ψ = ψξ = 0, T = TL, (3.2e)

ξ = 1
2

: ψ = ψξ = 0, T = TR, (3.2f )

η = 0 : ψ = ψη = 0, Tη = 0, (3.2g)

η = 1 : ht + Aψξ = 0, (3.2h)

−p+ 2
(A4hξψξξ − (1 + h2

ξ)A
2h−1ψξη + A2hξh

−2(1 + A2h2
ξ − A2hhξξ)ψη)

(1 + A2h2
ξ)

= Ca−1(A− CaT )A2hξξ(1 + A2hξ)
3/2, (3.2i )
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−A2(1− A2h2
ξ)ψξξ + h−2(1 + A2h2

ξ)
2ψηη − 2A2hξh

−1(1 + A2h2
ξ)ψξη

+
[
A2(1− A2h2

ξ)hhξξ + 2A2h2
ξ(1 + A2h2

ξ)
]
h−2ψη = −Tξ(1 + A2h2

ξ)
1/2, (3.2j )

(1 + A2h2
x)

1/2h−1Tη − A2hξ(1 + A2h2
ξ)
−1/2Tξ + Bi(T − Tg(ξ, t)) = 0. (3.2k )

One- and two-step implicit methods with accuracy O(∆t) and O(∆t2) have been used
for temporal discretization, where ∆t denotes the time step. Typically, calculations
were carried out over the first few time steps using the (self-starting) one-step method
and then continued using the more accurate (but not self-starting) two-step method.
Certain cases were repeated using only the one-step method with a much smaller step
size in order to check the accuracy and consistency of the calculations. Both methods
use the same second-order-accurate spatial discretization and have been found to be
stable. The following outline is focused on the two-step method.

It is assumed that all flow quantities at times t = (n−1)∆t and t = n∆t are available.
Temperature Tg(ξ, t) in the gas phase is changed to its value at t = (n + 1)∆t and
the flow and the temperature fields together with the location of the interface at time
t = (n+ 1)∆t are sought. The field equations are solved using a Picard-type iteration
on the shape of the interface and on the value of the streamfunction at the interface.
Initial estimates of the location of the interface and the value of the streamfunction
there are made and the flow problem is solved without enforcing the normal stress
and kinematic conditions at the interface. This is referred to as the inner problem
or the inner solution. Once the inner problem has been solved, the normal stress
condition is used to determine the new location of the interface, and the kinematic
condition is used to evaluate the new value of the streamfunction at the interface.
We shall refer to this part of the solution process as the outer problem or the outer
solution. The complete solution procedure involves iterations between the inner and
the outer problems until all conditions are satisfied with the desired accuracy. We
shall refer to the above iteration as the outer iteration.

3.1. Inner problem

The field equations are written at time t = (n+ 1)∆t in the form

∇2ψn+1 + ωn+1 = 0, (3.3a)

3ωn+1 − 4ωn + ωn−1

2∆t
+

A

hn+1
(ψn+1

η ωn+1
ξ − ψn+1

ξ ωn+1
η )

+
ηA(ψξ)

n+1
b ωn+1

η

hn+1
− ∇

2ωn+1

Re
= 0, (3.3b)

where ωn+1 has been replaced by backward, second-order finite-difference approxi-
mation, hn+1

t was replaced by (ψn+1
ξ )b using (3.2h), superscripts n − 1, n, n + 1 refer

to time steps, b denotes the value of the filed variable at the interface and hn+1 is
considered known. The energy equation has the same form as (3.3b) with ω replaced
by T , and Re replaced Ma.

A rectangular computational grid of size ∆ξ, ∆η in the (ξ, η)-directions is considered,
with grid lines parallel to the ξ- and η-axes and such that the grid fits exactly the
geometry of the computational domain, with the side and bottom walls and the
interface as certain grid lines. Around a typical interior grid point (ξ0, η0) we adopt
the convention that quantities at (ξ0, η0) and eight neighbouring points are denoted by
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Figure 2. Sketch of typical computational molecules. Solid lines describe spatial discretization while
dotted and dashed lines describe temporal discretization in the (ξ, t)- and (η, t)-planes, respectively.

subscripts 0, 1, . . . , 8 as shown in figure 2. Equations (3.3) are written at each interior
grid point (point A in figure 2) and the spatial derivatives are approximated by using
second-order finite differences in the usual manner, to give

−2(A1 + A2)ψ
n+1
0 + A1ψ

n+1
1 − A3ψ

n+1
2 + (A2 + A4)ψ

n+1
3 + A3ψ

n+1
4

+A1ψ
n+1
5 − A3ψ

n+1
6 + (A2 − A4)ψ

n+1
7 + A3ψ

n+1
8 + ωn+1

0 = 0, (3.4a)

−[2(A1 + A2) + ReA6]ω
n+1
0 + [A1 − ReA5(ψ

n+1
3 − ψn+1

7 ]ωn+1
1 − A3ω

n+1
2

+ [A2 + A4 − ReA7 + ReA5(ψ
n+1
1 − ψn+1

5 )]ωn+1
3 + A3ω

n+1
4

+ [A1 + ReA5(ψ
n+1
3 − ψn+1

7 )]ωn+1
5 − A3ω

n+1
6

+ [A2 − A4 + ReA7 − ReA5(ψ
n+1
1 − ψn+1

5 )]ωn+1
7

+ A3ω
n+1
8 + ReA6ω

n
0 = 0, (3.4b)

where

A1 =
A2

(∆ξ)2
, A2 = [1 + η2A2(hn+1

ξ )2](hn+1∆η)−2, A3 = ηA2hn+1
ξ (2hn+1∆ξ∆η)−1,

A4 = ηA2[2(hn+1
ξ )2 − hn+1hn+1

ξξ ][2(hn+1)2∆η]−1, A5 =
A

(4hn+1∆ξ∆η)
, A6 = (∆t)−1,

A7 = η(ψn+1
ξ )b(2h

n+1∆η)−1.

The boundary conditions for (3.4) are given by (3.2e–g, j). For (3.4a), the values
of ψn+1 are known at all grid points on the solid walls, and are known from the
previous outer iteration (or from the previous time step in the case of the first outer
iteration) at the interface. For (3.4b), a boundary condition for ωn+1 is required at
the grid points on the sidewalls. Here, we use the second-order approximation for the
sidewalls

ωn+1
w = A2(ψn+1

i+1 − 8ψn+1
i )/(2∆ξ2), (3.5a)
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where subscript w refers to the wall values, subscript i refers to the internal grid point
closest to w and subscript (i + 1) refers to the next grid point in the same direction.
A similar formula for the bottom of the cavity has the form

ωn+1
w = (ψn+1

i+1 − 8ψn+1
i )/[2∆η2(hn+1)2]. (3.5b)

In the above, hn+1 is considered to be known from the previous outer iteration (or
from the previous time step in the case of the first outer iteration). The boundary
condition at the interface is obtained by substituting (3.2j) into (3.2a), resulting in

ωn+1
b = −2A2(1 + A2(hn+1

ξ )2)−1(ψn+1
ξξ )b + (hn+1)−1(1 + A2(hn+1

ξ )2)−1

×{hn+1(1 + A2(hn+1
ξ )2)1/2(Tn+1

ξ )b + 2A2hn+1
ξξ (ψn+1

η )b}. (3.6)

In the above (ψn+1
ξξ )b, h

n+1, hn+1
ξ , hn+1

ξξ are considered to be known; hn+1
ξ and hn+1

ξξ are
evaluated using standard central-difference approximations based on the values of
hn+1 from the previous outer iteration (or from the previous time step in the case of
the first iteration). Evaluation of (ψn+1

ξξ )b is discussed in § 3.2. The temperature gradient

(Tn+1
ξ )b is evaluated using the standard central-difference approximation and (ψn+1

η )b
is determined using the one-sided difference approximation. All spatial discretization
formulas are second-order accurate.

For the energy equation, values of Tn+1 are known at the sidewalls. At the remaining
two boundaries, Tn+1 is determined from the discretized boundary conditions (3.2g)
and (3.2k) using the second-order finite-difference formulas.

Assuming that the location of the interface hn+1 and the value of the streamfunction
ψn+1
b at the interface are known, the problem (3.4) supplemented by the energy

equation and the boundary conditions described above can be solved either directly
or iteratively. Typically, in the present study, we used the Gauss–Seidel iteration
procedure. We shall refer to this process as the inner iteration. Linear extrapolation
based on the values of flow quantities at t = (n−1)∆t and t = n∆t was used to provide
the initial guess at time t = (n + 1)∆t. The systematic iterative procedure between
the various equations consisted of performing one complete Gauss–Seidel iteration
of (3.4a), followed by a similar iteration of (3.4b) and then a complete iteration of
the energy equation, followed by a recalculation of the boundary values of ωn+1 and
Tn+1. The iteration were performed until the convergence criteria, |qi+1 − qi| < ε1
and |Resi| < ε1 with ε1 = 10−6–10−8 were satisfied at all grid points. In the above, q
stands for any of the flow quantities (ψ,ω, T ), Res denotes residuum of any of the
discretized field equations, and subscript i denotes the (inner) iteration number.

3.2. Outer problem

The outer problem consists of evaluation of the new location of the interface and
the new value of ψn+1

b that correspond to the most recent solution of the inner
problem. The interface is determined from the normal stress condition (3.2i) subject
to the contact conditions (2.15) and the volume constraint (2.5). The field variables
determined by the inner problem are kept constant during solution of the outer
problem.

The normal stress condition (3.2i) involves the pressure at the interface which has
to be evaluated on the basis of the known solution of the inner problem. Equations
(2.10b, c) are solved for the components of the pressure gradient, transferred into the
(ξ, η)-plane using (3.1), expressed in a form suitable for the interface (i.e. for η = 1)
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and combined to yield

pξ = A2hξωξ − (1 + A2h2
ξ)h
−1ωη

−ReA
h2

ψη((1 + A2h2
ξ)ψξη + hξh

−1(A2hξξh− A2h2
ξ − 1)ψη)

−Re[(1 + A2h2
ξ)h
−1ψηt − A2hξψξt + Ah−2ψη[(1 + A2h2

ξ)ψξ − 2A2hhξψξξ]]. (3.7a)

Equation (3.7a) is integrated from ξ = 0 to ξ = a to get

p̃(a) = A2[(hξω)ξ=a − (hξω)ξ=0]− A2

∫ a

0

hξξω dξ +

∫ a

0

B dξ, (3.7b)

where the first three terms on the right-hand side resulted from the integration by
parts of the first term on the right-hand side of (3.7a) and B stands for the remaining
terms on the right-hand side of (3.7a). Integrals in (3.7b) are evaluated using the
trapezoidal rule based on the same grid as used in the determination of the flow field.
Direct numerical integration of (3.7a) is not advisable because it requires knowledge
of the (undefined) values of vorticity at the contact points.

An expression for the pressure can be written in general as

p(ξ, 1, t) = p̃(ξ, 1, t) +K(t), (3.8)

where p̃ denotes the normalized pressure satisfying condition p̃(0, 1, t) = 0 and K(t)
denotes an unknown additive constant.

The spatial derivatives with respect to η in (3.7a) are evaluated using one-sided
second-order finite-difference approximations based on the grid used in the inner
problem. The mixed derivative of ψ at t = (n+1)∆t with respect to spatial coordinates
ψξη is evaluated at the interface (point B in figure 2) according to the formula

(ψξη)3 = [3(ψ2 − ψ4)− 4(ψ1 − ψ5) + ψ8 − ψ6]/(4∆ξ∆η) + O(∆ξ2) + O(∆η2). (3.9)

The mixed derivatives ψξt and ψηt are evaluated using the formulae

(ψξt)B = [3(ψn+1
2 − ψn+1

1 )− 4(ψn2− ψn1) + ψn−1
2 − ψn−1

1 ]/(4∆t∆ξ) + O(∆t2)+ O(∆ξ2),

(3.10)

(ψηt)C = [3(3ψn+1
0 − 4ψn+1

1 + ψn+1
2 )− 4(3ψn0 − 4ψn1 + ψn2)

+3ψn−1
0 − 4ψn−1

1 + ψn−1
2 ]/(4∆t∆η)

+O(∆t)2 + O[(∆t)2(∆η)2] + O(∆η)2, (3.11)

where the subscripts refer to the points shown in figure 2.
The normal stress condition (3.2i) can be interpreted as a nonlinear ordinary

differential equation for h(ξ) with the known variable coefficients expressed in terms
of ψn+1, Tn+1, Pn+1. This equation involves an unknown pressure normalization
constant K and is subject to boundary conditions (2.15) and constraint (2.5). It is
assumed that a sufficiently good approximation of the solution is available, i.e.

h = ho + h1, K = Ko +K1, (3.12)

where ho, Ko are known and h1 � 1, K1 � 1. Newton–Raphson linearization leads
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to the following problem for h1, K1:

h1ξξ +H(ξ)h1ξ = M(ξ) +K1N(ξ), (3.13a)

h1(− 1
2
) = 0, (3.13b)

h1(
1
2
) = 0, (3.13c)∫ 1/2

−1/2

h1 dξ = 0, (3.13d)

where

H(ξ) = −3A2hoξhoξξ(1 + A2h2
oξ)
−1 − Ca(A− CaT )−1(1 + A2h2

oξ)
−1/2

×[4A2ψξξ − 4A2hoξξh
−1
o ψη + 2(1 + A2h2

oξ)ω],

M(ξ) = −Ca(A− CaT )−1(1 + A2h2
oξ)

1/2[2(1 + A2h2
oξ)h

−1
o ψξη − 2A2hoξψξξ

−2(1 + A2h2
oξ − A2hoξξho)h

−2
o hoξψη + (1 + A2h2

oξ)(p̃+Ko)]− hoξξ,

N(ξ) = −Ca(1 + h2
oξ)

3/2

(A− CaT )A2
.

The form of conditions (3.13b–d) assumes that ho satisfies the contact conditions
(2.15) and the volume constraint (2.5). In the calculations, ho is taken to be the shape
of the interface from the previous outer iteration. For a sufficiently small time step
a good approximation ho of the interface is always available and this permits taking
full advantage of the quadratic rate of convergence of the iterative process based on
linearization (3.13). Typically, one or two iterations would reduce the error to several
orders of magnitude less than the error accepted in the solution of the inner problem.

During each of the above iterations one has to solve problem (3.13). This is a linear
problem, thus its solution consists of a superposition of two linearly independent
solutions and a particular solution of the inhomogeneous problem. Two boundary
conditions (3.13b, c) and volumetric constraint (3.13d) provide the required three
conditions for the determination of the two constants of superposition and the
pressure constant K1.

Problem (3.13) is solved directly. Equation (3.13a) is discretized using the standard
central-difference formulas and (3.13d) is approximated using the trapezoidal rule.
The grid already used for the determination of the flow field is used in both cases.
The structure of the resulting matrix, together with the optimized matrix inversion
algorithm, are described by Chen & Floryan (1994).

Kinematic condition (3.2h) is written for time t = (n+ 1)∆t and the time derivative
hn+1
t is replaced by a backward, second-order, finite-difference approximation, i.e.

(ψn+1
ξ )b = − 1

A
(3hn+1 − 4hn + hn−1)/(2∆t) + O(∆t)2, (3.14)

where hn−1, hn denote the known locations of the interface at times t = (n − 1)∆t,
t = n∆t, respectively, and hn+1 denotes the most recent approximations of h at time
t = (n+ 1)∆t. Integration of (3.14) gives

(ψn+1)b =
1

A

(
3

∫ ξ

−1/2

hn+1 dξ − 4

∫ ξ

−1/2

hn dξ +

∫ ξ

−1/2

hn−1 dξ

)/
(2∆t), (3.15)
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where all integrals are evaluated using the trapezoidal rule. Solution of the inner
problem requires knowledge of ψn+1

b , (ψn+1
ξ )b, (ψn+1

ξξ )b. ψ
n+1
b is given by (3.15), (ψn+1

ξξ )b
is given by (3.14), (ψn+1

ξξ )b is evaluated using the derivative of the kinematic condition

(ψn+1
ξξ )b = −hn+1

ξt where hn+1
ξt is evaluated using a finite-difference approximation similar

to (3.10).

3.3. Outer iterations

A complete iterative cycle consists of determination of the flow field (inner problem)
followed by determination of the new approximation for hn+1 and ψn+1

b (outer prob-
lem). Such (outer) iterations are carried out until convergence criteria |hn+1

i+1 −hn+1
i | < ε2

and |Resi| < ε2 are satisfied at all grid points along the interface. In the above,
subscripts i, i+ 1 denote the (outer) iterations and Res stands for the residuum of the
normal stress condition. Calculations were typically carried out with ε2 = 10−6–10−8.

3.4. Verification of the algorithm

Details of the accuracy, grid convergence and stability testing can be found in Hamed
& Floryan (1998). Various tests confirmed that the algorithm is stable and delivers the
theoretically predicted accuracy. All numerical results presented in the next section
are at least two-digits accurate. Both spatial and temporal grid resolutions have
been selected using grid convergence studies carried out in the manner described
by Hamed & Floryan (1998). A grid with ∆η = ∆x = 0.05 and ∆t = 0.2 provides
sufficient accuracy for most cases considered. Certain cases were spot checked by
repeating calculations either with a smaller grid size or with a different method of
temporal discretization.

A part of the algorithm verification process involved repetition of the results
reported in the literature. It was also of interest to resolve the contradiction, already
referred to in the Introduction, in the results reported by Chen & Hwu (1993) and
Mundrane et al. (1995) and Mundrane & Zebib (1995), and the agreement between
the last group and Liakopoulos & Brown (1993). We repeated one test case reported
by the first two groups (A = 0.5, Re = 220, Ma = 2.2, Ca = 0.01, Bi = 0) and found
the transition to oscillatory convection exactly as reported by Chen & Hwu (1993).
The reader may note that Chen & Hwu (1993) solve the complete problem while
Mundrane et al. (1995) and Mundrane & Zebib (1995) use simplified methods based
on linearized interfacial boundary conditions; such linearizations partially decouple
the interface from the flow field. We have programmed a method based on expansions
in Ca, with Ca → 0, and concluded, by comparing results produced by this method
and by the complete algorithm, that such simplified methods are unable to reproduce
the time-dependent phenomena. When the problem is such that the transient effects
eventually die out, the simplified algorithm produces the correct steady limit. The
simplified algorithm is equivalent to the steady algorithm for the small deformation
problems described in detail by Chen & Floryan (1994), with the iterative solution
process interpreted as a certain ‘non-physical’ flow transient.

The case considered by Liakopoulos & Brown (1993) involves a short cavity (A = 1)
where the convection may have only a steady form, as discussed in the next section.
The simplified algorithm correctly predicts this flow. This is underscored by the fact
that we have reproduced results of Liakopoulos & Brown (1993) using the complete
algorithm and in all cases obtained steady flows.
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Figure 3. Shape of the interface as a function of capillary number Ca for L = 6. Solid and dashed
lines correspond to Re = 1 and Re = 400, respectively.

4. Discussion of results
We shall investigate the behaviour of the liquid contained in the cavity shown in

figure 1. The volume of the liquid is such that the interface is initially (i.e. before the
application of any heating) flat. The cavity sidewalls are differentially heated. The
temperature distribution in the gas phase along the interface has a linear form, i.e.

Tg(x) = −x. (4.1)

The sidewalls have temperatures TL = 1
2

and TR = − 1
2

and this implies that the
temperature gradient along the interface is a function of the cavity length L. Since
this heating does not satisfy the interface existence conditions (see § 1 for a discussion),
it is expected that the interface will undergo large deformations leading, possibly, to
rupture of the layer. The main objective of our work is the determination of the
form of the interface deformation and the limits of existence of a continuous layer.
In order to simplify the following discussion, we shall only consider the case Ma = 0
(Pr = 0), Bi = ∞. The first condition limits our results to highly conductive liquids,
such as liquid metals, where conductive heat transport dominates over convective
heat transport. The second condition implies a very high heat transfer coefficient in
the gas phase at the interface which makes the temperature of the interface effectively
equal to the temperature of the gas phase.

As a first step, we shall discuss the steady response of the liquid to the external
heating described above.

4.1. Steady-state response

Figure 3 illustrates the evolution of the interface deformation pattern as a function
of the capillary number Ca for Reynolds numbers Re = 1, Re = 400 and the cavity
length L = 6. The reader may recall that increasing Ca corresponds to the interface
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Figure 4. The maximum of the interface deformation on the left side of the cavity as a function
of capillary number Ca. The flow and deformation patterns corresponding to points (a), (b), (c) are
shown in figure 5, and those corresponding to points (d), (e), (f) are shown in figure 6.

becoming progressively softer. The interface bulges in at the hot end and bulges out
at the cold end. The maximum deformation occurs for small Ca in the area where the
interface bulges out; for larger Ca the maximum occurs in the area where the interface
bulges in. An increase of Ca results in a more rapid increase of the deformation at the
hot end. Results shown in figure 3 demonstrate that the interface there evolves toward
becoming tangential to the hot wall at the contact point. This implies formation of a
dryout at the sidewall. Another alternative is that the assumed location of the contact
point cannot be maintained and the contact line will move downwards. Since the
model described in § 2 breaks down under such circumstances, we have decided to
limit our investigation to conditions that lead to a contact angle between the interface
and the hot wall of no less than 5◦. Figure 4 presents the evolution of the maximum
of the interface deformation, in the area where the interface bulges in, as a function
of the capillary number Ca for the cavity lengths L = 2, 4, 6, 8 and for the Reynolds
numbers Re = 1, 100, 200, 400, respectively. The deformation curves shown in this
figure are terminated when the tangency condition is violated. The form of these
curves shows that when Ca increases and the interface approaches a position tangent
to the sidewall (at the left contact point), the amplitude of the deformation increases
at a rapidly accelerating rate. It is clear that when Ca reaches a certain critical value
Cacr a continuous interface connecting contact points cannot exist. This value of
Ca = Cacr defines a limit point for the system. It is likely that for Ca > Cacr the
liquid may separate into a drop attached to the left wall and the rest of it filling the
bottom of the cavity, with the left contact point located significantly below its original
position. The reader should note that we were unable to determine the true value of
Cacr and used in our discussion the value of Ca corresponding to the contact angle
of 5◦ instead.
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Figure 5. The evolution of the flow and deformation patterns as a function of capillary number
Ca for L = 6 and (a–c) Re = 1, (d–f) Re = 400: (a–f) respectively correspond to points (a–f) in
figure 4. Contour lines are shown every 10% of ψmax (solid lines); the dashed lines show 1% of
ψmax in (a, d, e) and 1% and 5% of ψmax in (b, c, f). In (a–f) |ψmax | = 0.2470, 0.4430, 0.5294, 0.2604,
0.3104, 0.3319 respectively.

Figure 5 displays the flow and deformation patterns as a functions of Ca for Re = 1
and Re = 400 for cavity length L = 6. Comparison of figure 5(a–c) with 5(d–f) shows
that the centre of the recirculating vortex moves closer to the cold wall when Re
increases. The end circulations at the hot and cold walls are totally different. This is
in qualitative agreement with Laure et al. (1990) and Ben Hadid & Roux (1992), who
analysed these differences in detail in the case of a non-deformable interface. They
demonstrated that these differences result from the increase of Re. Our results show
that these differences are due to the deformation as well as to the Reynolds number
effects; they can be seen even for Re = 1 (see figure 5a–c). An increase of Re also
results in the formation of a strong vortex core. This core becomes approximately
inviscid (with a constant vorticity in its interior) and its structure corresponds well to
Batchelor’s (1956) model for steady laminar flow with closed streamlines at large Re.
The minimum pressure associated with the vortex causes a small depression in the
surface elevation above the vortex (see figures 3 and 5(d–f)).

Figures 6(a) and 6(b) illustrate the evolution of the interface deformation as a
function of Re for cavity lengths L = 2, 4, 6, 8, respectively. It can be seen that
for L = 2 the magnitude of the deformation increases somewhat when the Reynolds
number increases to Re = 50 (regardless of the value of Ca) and it remains essentially
unchanged for Re > 50 (see figure 6a). This magnitude remains small in absolute
terms. Doubling of the length to L = 4 increases the deformation by almost a factor
of 10 (see figure 6a). Increase of Re from 0 to 500 smoothly reduces the deformation
by a factor of 2. Further increase of cavity length to L = 6 increases the deformation
by another factor of 3–4 compared to that obtained with L = 4. There is again
a smooth reduction of the deformation by a factor of 2 when Reynolds number
increases from 0 to 500. At higher values of Ca and low values of Re the interface
violates at the left end the tangency condition discussed before. Increase of L by
additional two units to L = 8 increases the deformation again by a factor of 3–4 (see
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Figure 6. The evolution of the maximum of the interface deformation on the left side of the cavity
as a function of Reynolds number Re for (a) the cavity lengths L = 2 (dotted lines) and L = 4
(solid lines); and (b) L = 6 (solid lines) and L = 8 (dashed lines). The flow and deformation patterns
corresponding to points (a–c) are shown in figure 7.

figure 6b). There is a similar reduction of the deformation by a factor of 2 when the
Reynolds number increases form Re = 0 to 500. The tangency condition is violated
for values of Ca smaller by a factor of 2 when compared to the case of L = 6. The
above results demonstrate that the interface deformation is strongly affected by the
cavity length L and rather weakly affected by the Reynolds number Re.

Figure 7 displays the interface and flow pattern as a function of Re for L = 6,
Ca = 0.14. A reduction of the deformation as Re increases is clearly visible. The
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Figure 7. The evolution of the flow and deformation patterns as a function of Reynolds number
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Figure 8. Surface pressure distributions as a function of Reynolds number Re for
L = 6, Ca = 0.14.

associated surface pressure distributions, shown in figure 8, are qualitatively similar
for all values of Re. They consist of large pressure peaks at the contact points
(positive peak at the cold wall, negative peak at the hot wall), an almost identical
linear pressure variation away from the contact points, and a local pressure minimum
close to the cold wall at a sufficiently high Re. One should keep in mind that the
pressure peaks at the contact points are artifacts of the problem formulation leading
to pressure divergence at these points. The apparent strength of the divergence on
O(1) length scales is influenced by the strength of vorticity near the corners. The
cavity may be divided, on the basis of pressure distribution, into three zones, i.e. a
central zone (where pressure changes linearly) and two turning zones (attached to the
sidewalls). The linearity of pressure in the central zone can be easily explained by
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noting similarity with Couette–Poiseuille flow with zero mass flux. Since the liquid is
driven to the right along the interface, a pressure gradient must appear to force the
liquid back along the bottom of the cavity to guarantee a zero mass flux across the
cavity at any fixed x position. It is remarkable that the linearity of the pressure in
the central zone can be observed even for large interface deformations. The largest
pressure gardient in the central zone is observed at small values of Re (see the curve
for Re = 10 in figure 8) due to a large viscous friction; the resulting large pressure
difference along the cavity length leads to a large interface deformation (figure 7). A
further reduction of Re would increase the pressure difference beyond the magnitude
that can be supported by the interface, leading to the interface rupture. An increase
of Re reduces the pressure gradient (due to the lower friction) and alters the flow
field through the increased role played by the inertial effects. Here, the reader may
recall that, as Re increases, the centre of the recirculating vortex moves closer to
the cold wall and assumes inviscid characteristics. Consequently, the corresponding
surface pressure distributions have peaks of smaller magnitude at the hot wall than
at the cold wall; the magnitudes of these peaks at the hot wall decrease while those
at the cold wall increase with an increase of Re. The pressure peaks by themselves
do not play an important role in the interface deformation due to the imposition of
the fixed contact points conditions. It is the pressure in the turning zone that directly
contributes to the deformation. Pressure in the left (hot) turning zone decreases with
Re due to the overall reduction in the strength of convection there. Pressure in the
right (cold) turning zone also decreases with Re but due to the formation of an inviscid
vortex core, which induces a local pressure minimum (see figure 8). The combined
effect of both of the above processes leads to a reduction in the pressure difference
between the left and right turning zones and a reduction of the deformation as Re
increases (see figure 7). The reader may note the appearance of a small depression
in the interface just above the vortex centre at a sufficiently high Re. This depression
correlates well with the local pressure minimum (figure 8).

Figure 9 illustrates variations of the interface deformation as a function of the
cavity length L. A rapid increase of the deformation as L increases can clearly be
seen for all values of Ca and Re considered. All curves have been terminated when the
tangency condition at the hot wall was violated. The ends of these curves correspond
therefore approximately to the limit points of the system. The form of these curves
shows that large deformations always occur, even for very small values of Ca, if the
cavity is made sufficiently long.

Figure 10 illustrates evolution of the flow field as a function of L for Re = 400,
Ca = 0.04. The centre of the vortex appears to be attached to the cold wall and
moves with it away from the centre as L increases. This vortex remains positioned
approximately at the centre of the cavity when Re = 1 (not shown). Figure 11 shows
the corresponding surface pressure distributions. They consist of a clearly identifiable
central zone and two turning zones. The pressure in the central zone has a constant
gradient whose magnitude is approximately independent of the cavity length. The
length of the central zone increases with L while the size of the turning zones remains
approximately constant, with the cold (right) one being noticeably bigger than the
hot (left) one. This agrees qualitatively with results of Laure et al. (1990) and Ben
Hadid & Roux (1992) who observed the turning zone at the cold wall to be much
bigger than the turning zone at the hot wall at higher values of Re. This agreement is
remarkable in view of the fact that they considered a non-deformable interface while
our results include the actual (large) deformations. The reader should, however, keep
in mind the fact that the flow structures in the present case are dominated by the
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Figure 10. The evolution of the flow and deformation patterns as a function of cavity length L for
Re = 400, Ca = 0.04. (a–c) correspond to points (a–c) in figure 9 respectively. Contour lines are
shown every 10% of ψmax (solid lines). The dashed line shows 1% of ψmax in (a, b) and 1% and 5%
of ψmax in (c). In (a–c) |ψmax | = 0.0492, 0.4198, 07172 respectively.

interface shape while in the case of the non-deformable interface considered by Laure
et al. (1990) and Ben Hadid & Roux (1992) they result from the spatial instability of
the basic parallel flow. The magnitude of the apparent pressure peak at the hot (left)
wall appears not to change with L, while the one at the cold (right) wall increases
noticeably. This increase can be explained by recalling that the centre of the vortex
approaches the cold wall as L increases (figure 10). One may note the existence of a
local pressure minimum in the cold (right) turning zone associated with the inviscid
vortex core.

The magnitude of the interface deformation increases rapidly with L as illustrated
in figure 12. For example, the maximum of the deformation on the right side of the
cavity assumes the values 0.00327, 0.0132, 0.0283, 0.0563, 0.0964, 0.1485, 0.2126, 0.290,
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Figure 11. Surface pressure distributions as a function of cavity length L for Re = 400, Ca = 0.04.
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Figure 12. The shape of the interface as a function of cavity length L for Re = 400, Ca = 0.04.

0.03552 for L = 2, 4, 5, 6, 7, 8, 9, 10, 10.69 (max), respectively, and correlates well with
the third power of L, i.e. hmax = 0.00029L3 for L ∈ 〈7, 10〉. Floryan & Chen (1994)
considered the same type of heating and demonstrated, using the small deformation
assumption, that for the pressure varying linearly with x in the cavity’s central zone,
the total pressure variation along the cavity is O(L), and the interface deformation is



Marangoni convection. Part 1 99

dominated by the pressure in the central zone and is O(L3). Our present results show
that these observations remain valid for high deformation and high Reynolds number
flow regimes. They underscore the fact that the pressure variations in the turning
zones of sufficiently long cavities have a minor influence on the interface deformation.

4.2. Time-dependent response

We have described in the previous subsection the steady response of the liquid when
the cavity walls are differentially heated with the temperature distribution along the
interface described by (4.1). We have determined that the steady-state response exists
only for a certain range of parameter values, with the tangency of the interface at
the left (hot) contact point being the limiting factor. In the present section, we shall
describe what happens outside this range and we shall demonstrate that the tangency
condition approximately defines the limit point for the system. We shall also discuss
other phenomena associated with different rates of heating. Since the evolution of
the system past the limit point could depend on the heating history, we shall consider
surface heating in the form

Tg(x, t) = g(x)fi(t), i = 1, 2, (4.2a)

where g(x) = −x and

f1(t) =H(t), f2(t) = 1− exp (−t2/a). (4.2b, c)

Instantaneous heating is described by the Heaviside functionH(t) in (4.2b). A variable
rate of heating is described by (4.2c), where the rate of heating is reduced by increasing
the value of the constant a. We shall measure the reduction in the rate of heating
by introducing the heating delay time tD defined as the length of time required to
reach 90% of the final surface temperature. For example, for a = 0.4343, 10.8574,
43.43, 1086, 4343 the heating delay time tD is equal to 1, 5, 10, 50, 100 time units,
respectively. In our investigations, we shall consider the heating rates changing from
tD = 0 (instantaneous heating) to tD = O(102).

We shall begin our discussion by considering the effects of the capillary number
Ca on the response of the liquid. Since the form of the unsteady response is a strong
function of the Reynolds number Re, we shall discuss each of the selected values of
Re separately.

Figure 13 displays the time history of the maximum interface deformation at the left
(hot) side of the cavity for Re = 1, L = 6 resulting from instantaneous heating. One
can observe an initial overshoot of the steady state followed by an oscillatory decaying
transient for Ca 6 0.1. For higher values of Ca (with Ca 6 Cacr , Cacr = 0.137), the
deformation approaches monotonically the steady state discussed in § 4.1. When
Ca > Cacr the deformation continuously increases until the tangency condition
at the left (hot) end is violated resulting in the termination of the calculations.
The form of the interface evolution suggests that the interface evolves towards
creation of a dry spot on the left (hot) sidewall around the contact point. The
critical value of the capillary number Cacr , determined using the tangency condition,
defines approximately the limit point of the system beyond which no steady state
(corresponding to a continuous interface connecting the specified contact points)
exists. The evolution of the interface as well as the flow patterns are shown in
figure 14 for Ca = 0.138 (which is just above Cacr ).

Figure 15 illustrates the effects of the cavity length L on the interface deformation.
It displays the time history of the maximum interface deformation at the left (hot)
side of the cavity for Re = 1, Ca = 0.1 resulting from an instantaneous heating.
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Figure 13. The maximum of the interface deformation on the left side of the cavity as a function of
time for Re = 1, L = 6 and instantaneous heating. The flow and deformation patterns corresponding
to points (a–c) are shown in figure 14. Deformation levels for Ca = 0.001, 0.005 and 0.01 have been
multiplied by 6, and for Ca = 0.05 by 1.5 for presentation purposes. Curves for other values of Ca
present the actual magnitudes of the deformation.

1.5

–3 2

y

(a) Time = 0.2

1.0

0.5

0
–2 –1 0 1 3 –3 2

(b) Time = 10.2

–2 –1 0 1 3 –3 2

(c) Time =111.0

–2 –1 0 1 3
x x x

Figure 14. The evolution of the flow and deformation patterns as a function of time for Re = 1,
L = 6, Cacr = 0.138 (just above Ca = 0.137) and instantaneous heating: (a–c) correspond to points
(a–c) in figure 13 respectively. Contour lines are shown every 10% of ψmax (solid lines). Dashed
lines show 1% and 5% of ψmax . The second dashed line in the recirculation zones in (a) shows 3%
rather than 5% of ψmax . In (a–c) |ψmax | = 0.0356, 0.0785, 0.0908 respectively.

One can observe the appearance of an initial overshoot of the steady state and
an oscillatory decaying transient for L 6 4. When 4 < L 6 Lcr (Lcr = 6.88),
the deformation monotonically approaches the steady state described in § 4.1. The
critical length Lcr corresponds to the maximum length for which the steady state
can be determined without violating the tangency condition. When L > Lcr , the
deformation continuously increases until the tangency condition is violated and the
calculations are terminated. The form of the interface evolution suggests the eventual
formation of a dry spot at the left (hot) wall. The critical cavity length Lcr determined
using the tangency condition determines approximately the limit point of the system
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Figure 15. The maximum of the interface deformation on the left side of the cavity as a function
of time for Re = 1, Ca = 0.1 and instantaneous heating.

beyond which no steady state (corresponding to a continuous interface connecting
the specified contact points) exists.

Figure 16 illustrates the response of the liquid when the Reynolds number is raised
to Re = 30 with L = 6 and with instantaneous heating. When Ca is small enough,
an initial overshoot of the steady state gives rise to an oscillatory decaying transient.
An increase of the capillary number Ca results in an increase of the amplitude and
a decrease of the frequency and the decay rate of the transient. Eventually, at high
enough Ca, this transient evolves into a permanent oscillatory state (see, for example,
the curve corresponding to Ca = 0.005) rather than dying out. Further increase of the
capillary number to Ca > 0.01 increases the amplitude and reduces the frequency of
the initial transient, but now this transient dies out completely after a sufficiently long
time. Still further increase of capillary number to Ca > 0.02 results in a much higher
amplitude, a much smaller frequency and a slower decay of the initial transient. In
summary, there are two issues of interest, i.e. the form of the final state and the
character of the initial transient. As far as the final state is concerned, there is a range
of Ca where two such states are possible, i.e. steady state described in § 4.1 and an
oscillatory state described above. In this range, it is not possible to reach the steady
state with an instantaneous heating. Outside this range, only steady states are possible.
As far as the initial transients are concerned, they can (almost instantaneously) easily
double the maximum deformation expected under the steady-state conditions and
could last for a long time.

Figures 17 and 18 illustrate the response of the system at Re = 60 and Re = 100,
respectively. The qualitative character of the response is the same as in the case of
Re = 30, i.e. in each case there is a range of values of Ca for which two responses
are possible, i.e. a steady and an oscillatory state. An increase of Re leads to a higher
amplitude and a smaller frequency and a smaller decay rate of the initial transient.
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Figure 16. The maximum of the interface deformation on the left side of the cavity as a function
of time for Re = 30, L = 6 and instantaneous heating. Deformation levels for Ca = 0.001 have
been multiplied by 2 for presentation purposes. Curves for other values of Ca present the actual
magnitudes of the deformation.

Comparison of figures 16 and 18 demonstrates that it takes more than twice as much
time for Re = 100 than for Re = 30 before the system assumes its permanent state,
regardless of whether this state is oscillatory or steady. In the range of Ca where both
steady and oscillatory states are admissible, only the oscillatory state can be reached
with instantaneous heating. The existence of oscillatory states has been noticed by
Chen & Hwu (1993), who considered the cavity of length L = 2 and the flows with
high values of the Marangoni numbers. They concluded that such states may exist
only when the Marangoni number reaches a critical value and that the convective
heat transfer effects are essential for their existence. The oscillatory states described
here are likely to be driven by a different mechanism which is independent of the
convective heat transfer.

The existence of strong initial transients raises the possibility that the fluid may
not be able to reach, under some conditions, the steady state without violating the
tangency condition. Figure 19 illustrates such a situation. The interface is rather
‘soft’, Ca = 0.13, and instantaneous heating creates a transient deformation which,
while not being large in absolute terms, is characterized by very steep slopes at the
contact points which violate the tangency condition. The corresponding deformation
curve is shown in figure 17. An efficient method for controlling (or eliminating)
the initial transients involves reduction in the rate of heating. Figure 17 illustrates
the effectiveness of this approach. The rate of heating is described by (4.2c). When
Ca = 0.02, the reduction in the heating rate that corresponds to the delay time
tD = 40 completely eliminates the initial transient. When Ca = 0.13, the heating with
delay time tD = 65 permits reaching the steady state in an almost monotonic fashion
and without violating the tangency condition.
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instantaneous heating. The interface has been plotted at constant step size ∆t = 0.2. The tangency
condition is violated at t = 5.6.

The existence of two permanent states of motion for a certain range of Ca raises the
question of the character of the selection mechanism. Results displayed in figure 17
for Ca = 0.005, Re = 60, L = 6 demonstrate that one may select any of these
states by changing the rate of heating, with a sufficiently slow heating favouring the
steady state. When the system is already in the steady state, the oscillatory state
can be triggered by imposing a large enough disturbance. Figure 20 illustrates such
a process. Vorticity at a single grid point located close to the interface around the
middle of the cavity (ξ = 0.005, η = 0.95) is disturbed by an amount equal to
1% and 2% of its steady state value. The smaller disturbance initially decays in
an oscillatory manner, with the amplitude of the oscillations decreasing at a rate
faster than exponential, which suggests a nonlinear process. When the disturbance
reaches the magnitude O(10−5) the decay becomes purely exponential suggesting a
linear stability process. The 2% disturbance grows in an oscillatory manner with
the amplitude of the oscillations increasing in a manner suggesting a nonlinear
process. The growth reaches a saturation point which corresponds to the permanent
oscillatory state discussed before. A 5% disturbance (not shown) decays to the same
(oscillatory) state in an oscillatory manner. One can conclude that the steady state
is linearly stable in the range of parameters studied, but is nonlinearly unstable with
the disturbance threshold being between 1% and 2% of the steady flow values. The
instability appears to have a subcritical character and it is possible that the steady
state may become linearly unstable at a higher values of Re. This question requires
further investigation.

We shall now discuss the characteristics of the oscillatory state. This state consists
of a nearly harmonic oscillation, as documented by the frequency spectrum shown in
figure 21, and can be represented in the following form:

h(ξ, t) = hav(ξ) + h1(ξ) cos [f(t− to)], (4.3a)
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the figure.

ps(ξ, t) = ps,av(ξ) + p1(ξ) cos [f(t− to) + φ], (4.3b)

ψ(ξ, η, t) = ψav(ξ, η) + ψ1(ξ, η) cos [f(t− to) + φ], (4.3c)

where hav denotes the average location of the interface, ps,av denotes the average value
of the surface pressure, ψav stands for the average value of the streamfunction, h1

denotes the amplitude of the oscillations of the interface, p1 denotes the amplitude of
the surface pressure oscillations, ψ1 stands for the amplitude of the oscillations of the
streamfunction, f denotes the frequency of the oscillations, φ denotes the phase shift
between the oscillations of the interface and the oscillations of the flow field, and to
denotes a reference point in time. Figures 22 and 23 display h1(ξ), p1(ξ) and ψ1(ξ, η)
for L = 6, Re = 60, Ca = 0.005, respectively. The oscillatory state has the form of
a sloshing motion (see figure 23) and manifests itself on the interface in the form of
a standing wave (see figure 22). One can easily conclude, when looking at figures 22
and 23, that the phase shift between the oscillations of the interface and the flow field
must be φ = π/2.

The frequency of the oscillations increases with a decrease of Ca and Re, as
illustrated in figure 24. The amplitude of the oscillations exhibits a peak at a certain
optimum value of the capillary number Ca = Caopt . The value of Caopt is rather
small and it decreases with an increase of Re. For example, the maximum amplitude
shifts from Caopt ≈ 0.005 at Re = 30 to Caopt ≈ 0.002 at Re = 100. The magnitude
of the amplitude at Caopt is a strong function of Re and it increases approximately
by a factor of 3 when Re increases from 30 to 100. Reduction of Ca below the
optimum value quickly reduces the amplitude of the oscillations (figure 24) and, in
fact, no oscillations can be detected if Ca is sufficiently small. This demonstrates
that the appearance of the oscillatory states described here is associated with the
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p1(x) for Re = 60, L = 6, Ca = 0.005.

deformability of the interface. Mathematical models of thermocapillary convection
that do not properly account for the deformability of the interface are unable to
predict the existence of such states. One should keep in mind that oscillatory states
driven by mechanisms that are not related to the interface deformability are also
possible (Peltier & Biringen 1993; Chen & Hwu 1993). An increase of Ca above Caopt

also decreases the amplitude but at a much smaller rate (this rate is almost linear for
Ca > 0.015). The oscillations disappear completely if Ca is sufficiently large.
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The oscillatory state strongly depends on the cavity length L. Figure 25 illustrates
variations of the amplitude and frequency of oscillations for Ca = 0.005. Re = 60 as
a function of L. One may note the disappearance of the oscillations for a sufficiently
short cavity. A qualitatively similar result has been obtained by Peltier & Biringen
(1993) who found that an oscillatory state may exist only if the cavity is long
enough and the Marangoni number is high enough. Because of the lack of interface
deformability and the presence of convective heat transfer effects in their analysis,
their oscillations are likely to be driven by a mechanism different from the one
responsible for the oscillations discussed here.
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The effects of the Reynolds number are illustrated in figure 25, displaying the
frequency and the amplitude of the oscillations for L = 6, Ca = 0.005 as a function
of Re. A reduction of Re below its critical value (Recr ≈ 10 in this particular
case) eliminates the oscillation through an increase of viscous dissipation. There is
an optimum Reopt which gives rise to the maximum amplitude of the oscillation
(Reopt ≈ 65 in this case). The frequency of the oscillations decreases monotonically
as Re increases. The fact that there exist optimum values of Reopt and Caopt beyond
which the amplitude of the oscillations quickly decreases (see figures 24 and 25)
suggests that a subtle interplay between the capillary and viscous forces is required
to maintain the oscillatory motion.

The above description of the oscillatory states permits one to identify a mechanism
responsible for their generation. Surface force (due to the thermocapillary effect)
applied to the stagnant liquid pulls this liquid toward the cold (right) wall. When
this pull is too strong (or when the fluid inertia is too high), the liquid overshoots
the steady equilibrium state resulting in an additional deformation of the interface.
The interface acts as a ‘spring’; it generates a restoring force by increasing capillary
pressure that is proportional to the additional deformation. The restoring force pushes
liquid back towards the hot (left) wall. If the restoring force is too high, the liquid
overshoots the equilibrium position at the left end and a restoring force with an
opposite direction (generated by the interface deformation) appears and forces the
liquid to flow back. As a result, one gets the sloshing motion illustrated in figure 22,
with the energy being stored and released by the free-surface ‘spring’. When the
interface in stiffer (smaller Ca; stiffer ‘spring’), the frequency of the motion increases
(see figure 23). For high enough stiffness (small enough Ca) the initial pull (maximum



Marangoni convection. Part 1 109

pull corresponds to instantaneous heating) is too weak to force the liquid beyond
the steady equilibrium position and thus no oscillations result. For high enough Ca
(soft interface; soft ‘spring’) the initial pull creates a large overshoot of the steady
equilibrium. Since the restoring force is much weaker, the liquid is gently pushed
back toward its equilibrium position and the transient motion dies out after a few
oscillations due to dissipation. When Re is small enough, dissipation prevents the
appearance of the oscillations. When the initial pull is weakened (by reducing the
rate of heating), the oscillatory motion is not triggered. It appears that the oscillatory
motion may exist only for a certain stiffness of the interface (as measured by Ca) and
that it has to be triggered by a large enough disturbance (in the range of parameters
studied) so that the nonlinear properties of the restoring force come into play, with
the thermocapillary shear being the energy source.

5. Conclusions
We have investigated Marangoni convection in a cavity with differentially heated

sidewalls, including complete interface deformation effects. Detailed results were
presented for the case of Marangoni number Ma = 0 (dominant conductive heat
transport; Pandtl number Pr = 0) and Biot number Bi = ∞ (very high heat transfer
coefficient at the interface).

The results show that steady convection exists only for Reynolds numbers Re
larger than, and for capillary numbers Ca and cavity lengths L smaller than, certain
critical values. The critical values Recr , Cacr and Lcr are mutually dependent. When
any of Re, Ca or L approaches its respective critical value, the magnitude of the
interface deformation increases rapidly, with the interface evolving (as a function of
this particular parameter) towards becoming tangential to the hot wall. Such a shape
of the interface implies formation of a dryout at the sidewall when any of Re, Ca,
or L passes its respective critical value. The critical values of Re, Ca and L were
determined using the tangency condition, defined as corresponding to the contact
angle between the sidewall and the interface being no less than 5◦. It is interesting
to find that an increase of Re reduces the interface deformation in the range of
parameters studied (Re < 500).

The convection pattern consists of a single dominant vortex. When Re increases, the
centre of this vortex moves towards the cold wall. When the cavity length increases,
the centre of the vortex remains approximately in the middle of the cavity if Re is very
small. For high values of Re, the centre of the vortex remains attached to the cold
wall and moves away from the centre of the cavity when the cavity length increases.
The flow field in the case of longer cavities (L > 4) can be divided into a core zone
and two turning zones, regardless of the magnitude of the interface deformation. The
core zone is characterized by a linear surface pressure distribution. The turning zones
at the hot and cold walls exhibit different structures, with the differences easily visible
at higher values of Re. For such cases the vortex core, which is located next to the
cold wall, attains inviscid characteristics creating a local pressure minimum and a
local depression in the interface.

Unsteady analysis shows that the response of the liquid depends on the rate of
heating. For Re, Ca and L outside the ranges limited by the critical values Recr , Cacr ,
Lcr , the deformation of the interface increases continuously in time from the moment
of application of the heating until the tangency condition becomes violated. This
shows that Recr , Cacr , Lcr define the limit points for the flow system. The location
of limit points in the parameter space is sensitive to the rate of heating for a certain
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range of parameters. The presence of very strong transient effects is responsible for
this sensitivity. These transients can be effectively controlled by reducing the rate of
heating.

Multiple, i.e. steady and oscillatory, states have been found in a certain range of Re,
Ca and L. The oscillatory state has the form of a simple harmonic sloshing motion.
It can exist only when the cavity length is greater than a certain critical length, and
its amplitude increases with an increase of L. The oscillatory state may appear only
when the interface is permitted to deform. Its amplitude is a function of Reynolds
and capillary numbers, and reaches a maximum for certain optimum values of Re and
Ca. It has been shown that, in the range of parameters studied where multiple states
are possible, the steady state is linearly stable. Transition between the steady and the
oscillatory states involves a nonlinear instability process. The oscillatory states can be
avoided by heating the liquid at a sufficiently small rate.

This work was supported by the NSERC of Canada.
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